Introduction

Interruption of EGFR signaling, either by blocking EGFR binding sites on the extracellular domain of the receptor or by inhibiting intracellular tyrosine kinase activity, can prevent the growth of EGFR-expressing tumors. EGFR tyrosine kinase inhibitors (TKIs) provide a favorable treatment outcome in EGFR mutation-positive NSCLC patients. However, many patients eventually develop progressive disease after treatment. Such acquired resistance limits the long-term efficacy of these EGFR TKIs in the clinic. The mechanism of acquired resistance include a variety of mutations of the EGFR and crosstalk with the adjacent cMet receptors that allow the tumor to partially compensate the EGFR activity.

EMB-01 is an innovative bispecific antibody developed based on EpimAb's proprietary FIT-Ig® platform to target EGFR and cMet on tumor cells simultaneously. The anti-EGFR and anti-cMet Fab domains in each EMB-01 arm are fused directly in tandem in a unique crisscross orientation without any mutations or use of peptide linkers to form a final tetravalent binding complex with the corresponding receptors on cell surface. We demonstrated the potential benefit of EMB-01 in treating EGFR and/or cMet driven cancers, particularly in NSCLC-PDX models derived from patients with acquired resistance due to secondary EGFR mutations in the kinase domain or cMet amplification and mutation. Currently, EMB-01 is under evaluation in a Phase I/II clinical trial with advanced/metastatic solid tumors. [ClinicalTrials.gov ID: NCT03797391]

Characterization of EMB-01 Binding to Cell Surface Antigen

EMB-01 Shows Similar Binding to Cell Surface EGFR and cMet Compared to Its Parental mAbs

- Western blot analysis of antibody induced dimer (true) and EGFR degradation in NCI-H722, NCI-H1975, and H441 cell lines. Cells were left untreated (lane 1) or treated with 1ug/ml of anti-EGFR mAb (lane 2), parental anti-cMet mAb (lane 3), or parental anti-EGFR/anti-cMet mAb (lane 4). Densitometric analysis was performed for total levels of dimer, EGFR (GAPDH loading control).

Characterization of EMB-01 Binding to Soluble Antigen

EMB-01 Maintains Binding Affinities of Parental mAbs

<table>
<thead>
<tr>
<th>EMB-01</th>
<th>Anti-EGFR mAb</th>
<th>Anti-cMet mAb</th>
<th>Human IgG1</th>
<th>Anti-EGFR mAb</th>
<th>Anti-cMet mAb</th>
<th>Human IgG1</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>200</td>
<td>400</td>
<td>600</td>
<td>2000</td>
<td>4000</td>
<td>8000</td>
</tr>
<tr>
<td>MFI</td>
<td>100</td>
<td>200</td>
<td>400</td>
<td>600</td>
<td>2000</td>
<td>4000</td>
</tr>
<tr>
<td>1.0000</td>
<td>0.3334</td>
<td>0.1114</td>
<td>0.0000</td>
<td>1.0000</td>
<td>0.3334</td>
<td>0.1114</td>
</tr>
</tbody>
</table>

Conclusion

- EMB-01 is a tetrafunctional bispecific antibody targeting EGFR and cMet on the tumor cell.
- EMB-01 was found to induce co-degradation of EGFR and cMet in various tumor cell lines, and such effect is observed by each of the parental mAb alone in combination.
- Highly potent and durable efficacy from EMB-01 binding and biological activity.
- EMB-01 is under evaluation in a Phase I/II clinical trial with advanced/metastatic solid tumors. [ClinicalTrials.gov ID: NCT03797391]

EMB-01: An innovative bispecific antibody targeting EGFR and cMet on tumor cells mediates a novel mechanism to improve anti-tumor efficacy

Fang Ren, Xuan Wu, Dandang Yang, Danqing Wu, Shiyong Gong, Yingxi Zhang, Stephan Lensky, Chengbin Wu. Shanghai EpimAb Biotherapeutics Co., Ltd., Shanghai, China

Reference:
Gong, S., Ren, F., Wu, D., Wu, K., and Wu, C. 2017. Fdbs--a tandem modularisation is a novel and versatile bispecific design for engaging multiple therapeutic targets. mAbs 9, 7, pp.1118–1128